d03 — Partial Differential Equations d03pre

NAG C Library Function Document

nag pde parab _1d_keller ode remesh (d03prc)

1 Purpose

nag pde parab_1d keller ode remesh (d03prc) integrates a system of linear or nonlinear, first-order, time-
dependent partial differential equations (PDEs) in one space variable, with scope for coupled ordinary
differential equations (ODEs), and automatic adaptive spatial remeshing. The spatial discretization is
performed using the Keller box scheme (see Keller (1970)) and the method of lines is employed to reduce
the PDEs to a system of ODEs. The resulting system is solved using a Backward Differentiation Formula
(BDF) method or a Theta method (switching between Newton’s method and functional iteration).

2 Specification

#include <nag.h>
#include <nagd03.h>

void nag_pde_parab_1d_keller_ode_remesh (Integer npde, double *ts, double tout,

void (*pdedef) (Integer npde, double t, double x, const double u[],
const double udot[], const double ux[], Integer ncode, const double v[],
const double vdot[], double res[], Integer *ires, Nag_Comm *comm),

void (*bndary) (Integer npde, double t, Integer ibnd, Integer nobec,
const double u[], const double udot[], Integer ncode, const double v[],
const double vdot[], double res[], Integer *ires, Nag_Comm *comm),

void (*uvinit) (Integer npde, Integer npts, Integer nxi, const double x[],
const double xi[], double u[], Integer ncode, double v[],
Nag_Comm *comm) ,

double ul], Integer npts, double x[], Integer nleft, Integer ncode,

void (*odedef) (Integer npde, double t, Integer ncode, const double v[],
const double vdot[], Integer nxi, const double xi[], const double ucpl[],
const double ucpx[], const double ucpt[], double f[], Integer x*ires,
Nag_Comm *comm),

Integer nxi, const double xi[], Integer neqn, const double rtol[],

const double atol[], Integer itol, Nag_NormType norm, Nag_LinAlgOption laopt,
const double algopt[], Nag_Boolean remesh, Integer nxfix, const double xfix[],
Integer nrmesh, double dxmesh, double trmesh, Integer ipminf, double xratio,
double con,

void (*monitf) (double t, Integer npts, Integer npde, const double x[],
const double u[], double fmon[], Nag_Comm *comm),

double rsave[], Integer Irsave, Integer isave[], Integer lisave, Integer itask,
Integer itrace, const char *outfile, Integer *ind, Nag_Comm *comm,
Nag_D03_Save *saved, NagError x*fail)

3 Description

nag pde parab_1d keller ode remesh (d03prc) integrates the system of first-order PDEs and coupled
ODEs given by the master equations:

G(x,t,U,U,U,V,V)=0, i=1.2,...,npde,a<x<b,t>t, (1)
Fi(t,V,V,§, U Ui, U;) =0, i=1.2,... ncode. (2)

In the PDE part of the problem given by (1), the functions G; must have the general form

[NP3660/8] d03pre.1

d03prc NAG C Library Manual

npde oU ncode

Gi:ZPiJa—/+2QijVj+Ri:O, i=1,2,...,npde, 3)
J= Jj=

where P;;, O;; and R; depend on x, ¢, U, U, and V.

The vector U is the set of PDE solution values

Uet) = [U1(.0), . Uppaelon) "

and the vector U, is the partial derivative with respect to x. The vector V' is the set of ODE solution
values

and ¥ denotes its derivative with respect to time.

In the ODE part given by (2), § represents a vector of n; spatial coupling points at which the ODEs are
coupled to the PDEs. These points may or may not be equal to some of the PDE spatial mesh points. U”,
U; and Uj; are the functions U, U, and U, evaluated at these coupling points. Each F; may only depend
linearly on time derivatives. Hence equation (2) may be written more precisely as

F=A-BV - CU;, (4)

T
where F = [F 1y F nmde} , A is a vector of length ncode, B is an ncode by ncode matrix, C is an

ncode by (n; x npde) matrix and the entries in 4, B and C may depend on ¢, & U”, Uy and V. In
practice you only need to supply a vector of information to define the ODEs and not the matrices B and C.
(See Section 5 for the specification of the user-supplied function odedef.)

The integration in time is from 7, to 7., over the space interval @ < x < b, where a = x; and b = x,(s are
the leftmost and rightmost points of a mesh x,x,, ..., Xy defined initially by you and (possibly) adapted
automatically during the integration according to user-specified criteria.

The PDE system which is defined by the functions G; must be specified in the user-supplied function
pdedef.

The initial (¢ = ¢,) values of the functions U(x, ¢) and V' (¢) must be specified in a function uvinit supplied
by you. Note that uvinit will be called again following any remeshing, and so U(x, #y) should be specified
for all values of x in the interval a < x < b, and not just the initial mesh points.

For a first-order system of PDEs, only one boundary condition is required for each PDE component U;.
The npde boundary conditions are separated into 7, at the left-hand boundary x = a, and »n; at the right-
hand boundary x = b, such that n, + n, = npde. The position of the boundary condition for each
component should be chosen with care; the general rule is that if the characteristic direction of U; at the
left-hand boundary (say) points into the interior of the solution domain, then the boundary condition for U,
should be specified at the left-hand boundary. Incorrect positioning of boundary conditions generally
results in initialization or integration difficulties in the underlying time integration functions.

The boundary conditions have the master equation form:

Gl (x,t,U,U,V,V)=0 atx=a, i=12,...,n, (5)
at the left-hand boundary, and

Gi(x,t,U, U, V,V)=0 atx=b, i=12,...,m, (6)
at the right-hand boundary.

Note that the functions G,L and Gf must not depend on U,, since spatial derivatives are not determined
explicitly in the Keller box scheme functions. If the problem involves derivative (Neumann) boundary
conditions then it is generally possible to restate such boundary conditions in terms of permissible

variables. Also note that G* and GX must be linear with respect to time derivatives, so that the boundary

d03pre.2 [NP3660/8]

d03 — Partial Differential Equations d03pre

conditions have the general form:

npde ncode

L L_ .
ZEJat—kZH,,V +8t=0, i=1,2,...,n, (7)

at the left-hand boundary, and

npde ncode

R R .
ZE,JOZUFZH Vi SE=0, i=1,2,...,m, (8)

at the right-hand boundary, where E%; s Efej, H,LJ, Hﬁ, St and S® depend on x,¢,U and V only.

The boundary conditions must be specified in a function bndary provided by you.
The problem is subject to the following restrictions:

() P, O;; and R; must not depend on any time derivatives;

(11) tg < tou, SO that integration is in the forward direction;

(iii) The evaluation of the function G; is done approximately at the mid-points of the mesh x[i — 1], for
i=1,2,...,npts, by calling the user-supplied function pdedef for each mid-point in turn. Any
discontinuities in the function must therefore be at one or more of the fixed mesh points specified by
xfix;

(iv) At least one of the functions P;; must be non-zero so that there is a time derivative present in the PDE
problem.

The algebraic-differential equation system which is defined by the functions F; must be specified in the
user-supplied function odedef. You must also specify the coupling points & in the array xi.

The first-order equations are approximated by a system of ODEs in time for the values of U; at mesh
points. In this method of lines approach the Keller box scheme is applied to each PDE in the space
variable only, resulting in a system of ODEs in time for the values of U, at each mesh point. In total there
are npde x npts + ncode ODEs in time direction. This system is then integrated forwards in time using a
Backward Differentiation Formula (BDF) or a Theta method.

The adaptive space remeshing can be used to generate meshes that automatically follow the changing time-
dependent nature of the solution, generally resulting in a more efficient and accurate solution using fewer
mesh points than may be necessary with a fixed uniform or non-uniform mesh. Problems with travelling
wavefronts or variable-width boundary layers for example will benefit from using a moving adaptive mesh.
The discrete time-step method used here (developed by Furzeland (1984)) automatically creates a new
mesh based on the current solution profile at certain time-steps, and the solution is then interpolated onto
the new mesh and the integration continues.

The method requires you to supply a function menitf which specifies in an analytic or numeric form the
particular aspect of the solution behaviour you wish to track. This so-called monitor function is used to
choose a mesh which equally distributes the integral of the monitor function over the domain. A typical
choice of monitor function is the second space derivative of the solution value at each point (or some
combination of the second space derivatives if more than one solution component), which results in
refinement in regions where the solution gradient is changing most rapidly.

You must specify the frequency of mesh updates along with certain other criteria such as adjacent mesh
ratios. Remeshing can be expensive and you are encouraged to experiment with the different options in
order to achieve an efficient solution which adequately tracks the desired features of the solution.

Note that unless the monitor function for the initial solution values is zero at all user-specified initial mesh
points, a new initial mesh is calculated and adopted according to the user-specified remeshing criteria. The
function uvinit will then be called again to determine the initial solution values at the new mesh points
(there is no interpolation at this stage) and the integration proceeds.

[NP3660/8] d03pre.3

d03prc NAG C Library Manual

4 References

Berzins M (1990) Developments in the NAG Library software for parabolic equations Scientific Software
Systems (ed J C Mason and M G Cox) 59-72 Chapman and Hall

Berzins M, Dew P M and Furzeland R M (1989) Developing software for time-dependent problems using
the method of lines and differential-algebraic integrators Appl. Numer. Math. 5 375-397

Berzins M and Furzeland R M (1992) An adaptive theta method for the solution of stiff and nonstiff
differential equations Appl. Numer. Math. 9 1-19

Furzeland R M (1984) The construction of adaptive space meshes TNER.85.022 Thornton Research
Centre, Chester

Keller H B (1970) A new difference scheme for parabolic problems Numerical Solutions of Partial
Differential Equations (ed J Bramble) 2 327-350 Academic Press

Pennington S V and Berzins M (1994) New NAG Library software for first-order partial differential
equations ACM Trans. Math. Softw. 20 63-99

5 Arguments

1: npde — Integer Input
On entry: the number of PDEs to be solved.
Constraint. npde > 1.

2: ts — double * Input/Output
On entry: the initial value of the independent variable z.
Constraint: ts < tout.

On exit: the value of ¢ corresponding to the solution values in u. Normally ts = tout.

3: tout — double Input

On entry: the final value of ¢ to which the integration is to be carried out.

4: pdedef — function, supplied by the user External Function

pdedef must evaluate the functions G; which define the system of PDEs. pdedef is called
approximately = midway between each pair of mesh points in turn by
nag pde parab 1d keller ode remesh (d03prc).

Its specification is:

void pdedef (Integer npde, double t, double x, const double ul],
const double udot[], const double ux[], Integer ncode, const double v[],
const double vdot[], double res[], Integer *ires, Nag_Comm *comm)

l: npde — Integer Input
On entry: the number of PDEs in the system.

2: t — double Input

On entry: the current value of the independent variable .

3: x — double Input

On entry: the current value of the space variable x.

4: u[npde| — const double Input

On entry: u[i — 1] contains the value of the component U,(x,¢), for i = 1,2,...,npde.

d03pre.4 [NP3660/8]

d03 — Partial Differential Equations d03prc

10:

11:

12:

[NP3660/8]

udot[npde| — const double Input
. oU;(x,t
On entry: udot[i — 1] contains the value of the component #, for
i=1,2,..., npde.
ux[npde] — const double Input
. oU,(x, ¢
On entry: ux[i — 1] contains the value of the component #, fori=1,2,...,npde.
X
ncode — Integer Input
On entry: the number of coupled ODEs in the system.
v[ncode] — const double Input
On entry: v[i — 1] contains the value of component V,(¢), for i = 1,2,..., ncode.
vdot[ncode] — const double Input
On entry: vdot[i — 1] contains the value of component V;(¢), for i = 1,2,...,ncode.
res[npde| — double Output
On exit: res[i — 1] must contain the ith component of G, for i = 1,2, ..., npde, where G is

defined as

npde oU ncode

J= J=

i.e., only terms depending explicitly on time derivatives, or

npde o ncode

G, = Zl Pl,7tUr Zl 0,V +R,, (10)
J= J=

i.e., all terms in equation (3).

The definition of G is determined by the input value of ires.

ires — Integer * Input/Output

On entry: the form of G; that must be returned in the array res. If ires = —1, then
equation (9) above must be used. If ires = 1, then equation (10) above must be used.

On exit: should usually remain unchanged. However, you may set ires to force the
integration function to take certain actions, as described below:
ires =2
Indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail.code = NE_USER _STOP.
ires =3

Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set ires = 3 when a physically
meaningless input or output value has been generated. If you consecutively set
ires = 3, then nag pde parab _1d keller ode remesh (d03prc) returns to the calling
function with the error indicator set to fail.code = NE_FAILED DERIV.

comm — Nag Comm * Communication Structure

Pointer to structure of type Nag_Comm; the following members are relevant to pdedef.

d03prc.5

d03prc NAG C Library Manual
user — double *
iuser — Integer *
p — Pointer
The type Pointer will be void *. Before calling
nag_pde parab 1d keller ode remesh (d03prc) these pointers may be allocated
memory by the user and initialized with various quantities for use by pdedef when
called from nag pde parab _1d keller ode remesh (d03prc).
5: bndary — function, supplied by the user External Function

bndary must evaluate the functions GiL and G,R which describe the boundary conditions, as given in
(5) and (6).

Its specification is:

d03prc.6

void bndary (Integer mpde, double t, Integer ibnd, Integer nobc,

const double ul[l, const double udot[], Integer ncode, const double v[],
const double vdot[], double res[], Integer *ires, Nag_Comm *comm)

npde — Integer Input
On entry: the number of PDEs in the system.

t — double Input

On entry: the current value of the independent variable .

ibnd — Integer Input
On entry: specifies which boundary conditions are to be evaluated.
ibnd =0
bndary must compute the left-hand boundary condition at x = a.
ibnd # 0

bndary must compute of the right-hand boundary condition at x = b.

nobc — Integer Input
On entry: specifies the number n, of boundary conditions at the boundary specified by
ibnd.

u[npde] — const double Input
On entry: ufi — 1] contains the value of the component U,(x,?) at the boundary specified
by ibnd, for i = 1,2,...,npde.

udot[npde| — const double Input

. oU,(x,t
On entry: udot[i — 1] contains the value of the component #, for
i=1,2,..., npde.
ncode — Integer Input

On entry: the number of coupled ODEs in the system.

v[ncode] — const double Input

On entry: v[i — 1] contains the value of component V,(¢), for i = 1,2,..., ncode.

[NP3660/8]

d03 — Partial Differential Equations d03prc

10:

12:

vdot[ncode| — const double Input

On entry: vdot[i — 1] contains the value of component V;(¢), for i = 1,2,...,ncode.

Note: vdot[i — 1], for i = 1,2,...,ncode, may only appear linearly as in (11) and (12).

res[nobc| — double Output

On exit: res[i — 1] must contain the ith component of G* or GX, depending on the value of
ibnd, for i = 1,2,...,nobc, where G" is defined as

npde ncode

Z%a+2mw (11)

i.e., only terms depending explicitly on time derivatives, or

npde ncode

ZE,/ o L+ E HLV;+ S, (12)

i.e., all terms in equation (7), and similarly for Gf.

The definitions of G* and G® are determined by the input value of ires.

ires — Integer * Input/Output

On entry: the form of G,L (or Gf) that must be returned in the array res. If ires = —1,
then equation (11) above must be used. If ires = 1, then equation (12) above must be
used.

On exit: should usually remain unchanged. However, you may set ires to force the
integration function to take certain actions as described below:

ires =2

Indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail.code = NE_USER _STOP.

ires =3

Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set ires = 3 when a physically
meaningless input or output value has been generated. If you consecutively set
ires = 3, then nag pde parab _1d keller ode remesh (d03prc) returns to the calling
function with the error indicator set to fail.code = NE_FAILED_DERIV.

comm — Nag Comm * Communication Structure
Pointer to structure of type Nag Comm; the following members are relevant to bndary.

user — double *
iuser — Integer *
p — Pointer

The type Pointer will be void *. Before calling

nag pde parab 1d keller ode remesh (d03prc) these pointers may be allocated
memory by the user and initialized with various quantities for use by bndary when
called from nag pde parab 1d keller ode remesh (d03prc).

6: uvinit — function, supplied by the user External Function

uvinit must supply the initial (¢ = ;) values of U(x,¢) and ¥ (¢) for all values of x in the interval

[a, b].

Its specification is:

[NP3660/8]

d03pre.7

d03prc NAG C Library Manual

void uvinit (Integer npde, Integer npts, Integer nxi, const double x[],
const double xi[], double u[], Integer ncode, double v[], Nag_Comm *comm)

l: npde — Integer Input
On entry: the number of PDEs in the system.

2: npts — Integer Input
On entry: the number of mesh points in the interval [a, b].

3: nxi — Integer Input

On entry: the number of ODE/PDE coupling points.

4: x[npts| — const double Input
On entry: the current mesh. x[i — 1] contains the value of x;, for i =1,2,... npts.
5: xi[nxi] — const double Input

On entry: xi[i — 1] contains the ODE/PDE coupling point, £, for i = 1,2, ..., nxi

6: u[npde x npts] — double Output
On exit: ulnpde x j + i] contains the value of the component U,(x;, 1), for
i=1,2,...,npde; j=1,2,... npts.

7: ncode — Integer Input

On entry: the number of coupled ODEs in the system.

8: v[ncode] — double Output
On exit: v[i — 1] must contain the value of component V;(¢,), for i = 1,2,...,ncode.
9: comm — Nag Comm * Communication Structure

Pointer to structure of type Nag_Comm; the following members are relevant to uvinit.

user — double *
iuser — Integer *
p — Pointer

The type Pointer will be void *. Before calling

nag pde parab_1d keller ode remesh (d03prc) these pointers may be allocated
memory by the user and initialized with various quantities for use by uvinit when
called from nag pde parab _1d keller ode remesh (d03prc).

7: u[neqn] — double Input/Output
On entry: if ind = 1, the value of u must be unchanged from the previous call.
On exit: ulnpde x (j — 1) + i — 1] contains the computed solution U, (x;,¢), for i = 1,2,...,npde;
j=1,2,...,npts, and u[npts x npde + k — 1] contains V;(¢), for k = 1,2,..., ncode, evaluated at
t=ts.

8: npts — Integer Input
On entry: the number of mesh points in the interval [a, b].

Constraint: npts > 3.

d03pre.8 [NP3660/8]

d03 — Partial Differential Equations d03pre

9:

10:

11:

12:

x[npts] — double Input/Output

On entry: the initial mesh points in the space direction. x[0] must specify the left-hand boundary, a,
and x[npts — 1] must specify the right-hand boundary, b.

Constraint: x[0] < x[1] < --- < x[npts — 1].

On exit: the final values of the mesh points.

nleft — Integer Input
On entry: the number n, of boundary conditions at the left-hand mesh point x[0].

Constraint: 0 < nleft < npde.

ncode — Integer Input
On entry: the number of coupled ODE components.

Constraint: ncode > 0.

odedef — function, supplied by the user External Function

odedef must evaluate the functions F, which define the system of ODEs, as given in (4). If you
wish to compute the solution of a system of PDEs only (i.e., ncode = 0), odedef must be the
dummy function dO3pek. (dO03pek is included in the NAG C Library; however, its name may be
implementation-dependent: see the Users’ Note for your implementation for details.)

Its specification is:

void odedef (Integer npde, double t, Integer ncode, const double v[],
const double vdot[], Integer nxi, const double xi[], const double ucpl[],
const double ucpx[], const double ucpt[], double f[], Integer xires,
Nag_Comm *comm)

1: npde — Integer Input
On entry: the number of PDEs in the system.

2: t — double Input

On entry: the current value of the independent variable .

3: ncode — Integer Input

On entry: the number of coupled ODEs in the system.

4: v[ncode] — const double Input
On entry: v[i — 1] contains the value of component V,(¢), for i = 1,2, ..., ncode.

5: vdot[ncode] — const double Input
On entry: vdot[i — 1] contains the value of component V;(¢), for i = 1,2,...,ncode.

6: nxi — Integer Input

On entry: the number of ODE/PDE coupling points.

7: xi[nxi] — const double Input

On entry: xi[i — 1] contains the ODE/PDE coupling point, &, for i = 1,2, ..., nxi.

[NP3660/8] d03pre.9

d03pre

10:

12:

13:

NAG C Library Manual

ucp[npde X nxi] — const double Input

On entry: ucp[npde x j + i] contains the value of Uj(x,) at the coupling point x = &, for
i=1,2,...,npde; j =1,2,... nxi.

ucpx[npde X nxi] — const double Input
L . U, (x, 1) . .
On entry: ucpx[npde x j + i] contains the value of A at the coupling point x = §;
X
fori=1,2,...,npde; j=1,2,... nxi
ucpt[npde X nxi|] — const double Input

oU;
On entry: ucpt[npde x j + i] contains the value of Ttl at the coupling point x = &, for
i=1,2,...,npde; j=1,2,... nxi.

fincode] — double Output
On exit: f[i — 1] must contain the ith component of f, for i = 1,2,..., ncode, where f is
defined as

F = —BV — CU;, (13)

that is, only terms depending explicitly on time derivatives, or

F=A4-BV-CU;, (14)
that is, all terms in equation (4). The definition of f is determined by the input value of
ires.
ires — Integer * Input/Output

On entry: the form of f that must be returned in the array f. If ires = —1, then equation
(13) above must be used. If ires = 1, then equation (14) above must be used.

On exit: should usually remain unchanged. However, you may reset ires to force the
integration function to take certain actions, as described below:

ires =2

Indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail.code = NE_USER_STOP.

ires =3

Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set ires = 3 when a physically
meaningless input or output value has been generated. If you consecutively set
ires = 3, then nag pde parab 1d keller ode remesh (d03prc) returns to the calling
function with the error indicator set to fail.code = NE_FAILED DERIV.

comm — Nag Comm * Communication Structure
Pointer to structure of type Nag_Comm; the following members are relevant to odedef.

user — double *
iuser — Integer *
p — Pointer

The type Pointer will be void *. Before calling

nag pde parab _1d keller ode remesh (d03prc) these pointers may be allocated
memory by the user and initialized with various quantities for use by odedef when
called from nag pde parab 1d keller ode remesh (d03prc).

d03prc.10

[NP3660/8]

d03 — Partial Differential Equations d03prc

13:

14:

15:

16:

17:

18:

nxi — Integer Input
On entry: the number of ODE/PDE coupling points.
Constraints:

if ncode = 0, nxi = 0;

if ncode > 0, nxi > 0.
xi[dim] — const double Input
Note: the dimension, dim, of the array xi must be at least max(1, nxi).
On entry: xi[i — 1], for i = 1,2,...,nxi, must be set to the ODE/PDE coupling points, &;.
Constraint: x[0] < xi[0] < xi[l] < --- < xi[nxi — 1] < x[npts — 1].

neqn — Integer Input
On entry: the number of ODEs in the time direction.

Constraint: neqn = npde X npts + ncode.

rtol[dim] — const double Input
Note: the dimension, dim, of the array rtol must be at least

1 when itol = 1 or 2;
neqn when itol = 3 or 4.

On entry: the relative local error tolerance.

Constraint: rtoli — 1] > 0 for all relevant i.

atol[dim] — const double Input
Note: the dimension, dim, of the array atol must be at least

1 when itol = 1 or 3;
neqn when itol = 2 or 4.

On entry: the absolute local error tolerance.

Constraint: atol[i — 1] > 0 for all relevant i.

itol — Integer Input

A value to indicate the form of the local error test. itol indicates to
nag pde parab_1d keller ode remesh (d03prc) whether to interpret either or both of rtol or atol
as a vector or scalar. The error test to be satisfied is ||e;/w;|| < 1.0, where w; is defined as follows:

On entry:
itol rtol atol w;
1 scalar scalar rtol[0] x |u[i — 1]| + atol[0]
2 scalar vector rtol[0] x |u[i — 1]| 4 atol[i — 1]
3 vector scalar rtol[i — 1] x |u[i — 1]| + atol[0]
4 vector vector rtol[i — 1] x |u[i — 1]| + atol[i — 1]

In the above, ¢; denotes the estimated local error for the ith component of the coupled PDE/ODE
system in time, ufi — 1], for i = 1,2,... neqn.

The choice of norm used is defined by the argument norm, see below.

Constraint: 1 < itol < 4.

norm — Nag NormType Input
On entry: the type of norm to be used.

[NP3660/8] d03pre.11

d03prc NAG C Library Manual

20:

21:

norm = Nag MaxNorm
Maximum norm.

norm = Nag_TwoNorm
Averaged L, norm.

If U,om denotes the norm of the vector u of length neqn, then for the averaged L, norm

neqn

Y UE)/w),

i=1

1

Unorm =
neqn

while for the maximum norm

Unorm = max |ll[l - 1]/W1|

See the description of the itol argument for the formulation of the weight vector w.

Constraint: norm = Nag MaxNorm or Nag TwoNorm.

laopt — Nag_LinAlgOption Input
On entry: the type of matrix algebra required.
laopt = Nag_LinAlgFull
Full matrix methods to be used.
laopt = Nag_LinAlgBand
Banded matrix methods to be used.
laopt = Nag_LinAlgSparse
Sparse matrix methods to be used.
Constraint: laopt = Nag_LinAlgFull, Nag_LinAlgBand or Nag_LinAlgSparse
Note: you are recommended to use the banded option when no coupled ODEs are present (i.e.,
ncode = 0).
algopt[30] — const double Input

On entry: may be set to control various options available in the integrator. If you wish to employ
all the default options, then algopt[0] should be set to 0.0. Default values will also be used for any
other elements of algopt set to zero. The permissible values, default values, and meanings are as
follows:

algopt[0]
Selects the ODE integration method to be used. If algopt[0] = 1.0, a BDF method is used
and if algopt[0] = 2.0, a Theta method is used. The default value is algopt[0] = 1.0.

If algopt[0] = 2.0, then algopt[i], for i = 1,2,3 are not used.

algopt][1]
Specifies the maximum order of the BDF integration formula to be used. algopt[1] may be
1.0, 2.0, 3.0, 4.0 or 5.0. The default value is algopt[1] = 5.0.

algopt[2]

Specifies what method is to be used to solve the system of nonlinear equations arising on
each step of the BDF method. If algopt[2] = 1.0 a modified Newton iteration is used and if
algopt[2] = 2.0 a functional iteration method is used. If functional iteration is selected and
the integrator encounters difficulty, then there is an automatic switch to the modified Newton
iteration. The default value is algopt[2] = 1.0.

d03pre.12 [NP3660/8]

d03 — Partial Differential Equations d03pre

algopt[3]

Specifies whether or not the Petzold error test is to be employed. The Petzold error test
results in extra overhead but is more suitable when algebraic equations are present, such as
P;;=0.0, for j=1,2,...,npde for some i or when there is no V;(t) dependence in the
coupled ODE system. If algopt[3] = 1.0, then the Petzold test is used. If algopt[3] = 2.0,
then the Petzold test is not used. The default value is algopt[3] = 1.0.

If algopt[0] = 1.0, then algopt[i], for i = 4,5,6 are not used.
algopt[4]

Specifies the value of Theta to be used in the Theta integration method.
0.51 < algopt[4] < 0.99. The default value is algopt[4] = 0.55.

algopt|[5]

Specifies what method is to be used to solve the system of nonlinear equations arising on
each step of the Theta method. If algopt[5] = 1.0, a modified Newton iteration is used and if
algopt[5] = 2.0, a functional iteration method is used. The default value is algopt[5] = 1.0.

algopt|[6]

Specifies whether or not the integrator is allowed to switch automatically between modified
Newton and functional iteration methods in order to be more efficient. If algopt[6] = 1.0,
then switching is allowed and if algopt[6] = 2.0, then switching is not allowed. The default
value is algopt[6] = 1.0.

algopt[10]

Specifies a point in the time direction, 7, beyond which integration must not be attempted.
The use of 7. is described under the argument itask. If algopt[0] # 0.0, a value of 0.0 for
algopt[10], say, should be specified even if itask subsequently specifies that 7.; will not be
used.

algopt[11]

Specifies the minimum absolute step size to be allowed in the time integration. If this option
is not required, algopt[11] should be set to 0.0.

algopt[12]

Specifies the maximum absolute step size to be allowed in the time integration. If this option
is not required, algopt[12] should be set to 0.0.

algopt[13]

Specifies the initial step size to be attempted by the integrator. If algopt[13] = 0.0, then the
initial step size is calculated internally.

algopt[14]
Specifies the maximum number of steps to be attempted by the integrator in any one call. If
algopt[14] = 0.0, then no limit is imposed.

algopt[22]

Specifies what method is to be used to solve the nonlinear equations at the initial point to
initialize the values of U, U,, ¥ and V. If algopt[22] = 1.0, a modified Newton iteration is
used and if algopt[22] =2.0, functional iteration is used. The default value is
algopt[22] = 1.0.
algopt[28] and algopt[29] are used only for the sparse matrix algebra option, i.e.,
laopt = Nag_LinAlgSparse.

algopt[28]

Governs the choice of pivots during the decomposition of the first Jacobian matrix. It should
lie in the range 0.0 < algopt[28] < 1.0, with smaller values biasing the algorithm towards
maintaining sparsity at the expense of numerical stability. If algopt[28] lies outside this range

[NP3660/8] d03pre.13

d03prc NAG C Library Manual

22:

23:

24.

25:

then the default value is used. If the functions regard the Jacobian matrix as numerically
singular then increasing algopt[28] towards 1.0 may help, but at the cost of increased fill-in.
The default value is algopt[28] = 0.1.

algopt[29]
Used as a relative pivot threshold during subsequent Jacobian decompositions (see
algopt[28]) below which an internal error is invoked. algopt[29] must be greater than
zero, otherwise the default value is used. If algopt[29] is greater than 1.0 no check is made
on the pivot size, and this may be a necessary option if the Jacobian is found to be
numerically singular (see algopt[28]). The default value is algopt[29] = 0.0001.

remesh — Nag Boolean Input

On entry: indicates whether or not spatial remeshing should be performed.

remesh = Nag_True
Indicates that spatial remeshing should be performed as specified.

remesh = Nag_ False

Indicates that spatial remeshing should be suppressed.
Note: remesh should not be changed between consecutive calls to
nag pde parab _1d keller ode remesh (d03prc). Remeshing can be switched off or on at specified
times by using appropriate values for the arguments nrmesh and trmesh at each call.
nxfix — Integer Input
On entry: the number of fixed mesh points.
Constraint: 0 < nxfix < npts — 2
Note: the end points x[0] and x[npts — 1] are fixed automatically and hence should not be specified
as fixed points.
xfix[dim] — const double Input
Note: the dimension, dim, of the array xfix must be at least max(1, nxfix).

On entry: xfix[i — 1], for i = 1,2, ..., nxfix, must contain the value of the x co-ordinate at the ith
fixed mesh point.

Constraint: xfix[i — 1] < xfix[i], for i=1,2,...,nxfix — 1, and each fixed mesh point must
coincide with a user-supplied initial mesh point, that is xfix[i — 1] =x[j — 1] for some j,
2 <j< npts — 1.

Note: the positions of the fixed mesh points in the array x remain fixed during remeshing, and so
the number of mesh points between adjacent fixed points (or between fixed points and end points)
does not change. You should take this into account when choosing the initial mesh distribution.
nrmesh — Integer Input
On entry: indicates the form of meshing to be performed.

nrmesh < 0

Indicates that a new mesh is adopted according to the argument dxmesh below. The mesh is
tested every |nrmesh| timesteps.

nrmesh = 0

Indicates that remeshing should take place just once at the end of the first time step reached
when ¢ > trmesh (see below).

nrmesh > 0

Indicates that remeshing will take place every mrmesh time steps, with no testing using
dxmesh.

d03pre.14 [NP3660/8]

d03 — Partial Differential Equations d03prc

26:

27:

28:

29:

30:

Note: nrmesh may be changed between consecutive calls to nag pde parab 1d keller ode remesh
(d03prc) to give greater flexibility over the times of remeshing.

dxmesh — double Input

On entry: determines whether a new mesh is adopted when nrmesh is set less than zero. A possible
new mesh is calculated at the end of every |nrmesh| time steps, but is adopted only if

A4V > 0 4 dxmesh x (x0 — '),
or
I I l
AV <9 — dxmesh x (x) — x09).

dxmesh thus imposes a lower limit on the difference between one mesh and the next.

Constraint. dxmesh > 0.0.

trmesh — double Input

On entry: specifies when remeshing will take place when nrmesh is set to zero. Remeshing will
occur just once at the end of the first time step reached when ¢ is greater than trmesh.

Note: trmesh may be changed between consecutive calls to nag pde parab 1d keller ode remesh
(d03prc) to force remeshing at several specified times.
ipminf — Integer Input
On entry: the level of trace information regarding the adaptive remeshing.
ipminf = 0
No trace information.
ipminf = 1
Brief summary of mesh characteristics.
ipminf = 2

More detailed information, including old and new mesh points, mesh sizes and monitor
function values.

Constraint: 0 < ipminf < 2.

xratio — double Input

On entry: input bound on adjacent mesh ratio (greater than 1.0 and typically in the range 1.5 to 3.0).
The remeshing functions will attempt to ensure that

(x; — x;_1)/xratio < x; | — x; < xratio X (x; — x;_;).
Suggested value: xratio = 1.5.

Constraint. xratio > 1.0.

con — double Input

On entry: an input bound on the sub-integral of the monitor function F™*"(x) over each space step.
The remeshing functions will attempt to ensure that

Xit1 X ipts
/ F™"(x)dx < con / " F % (x)dx,
X1 X1
(see Furzeland (1984)). con gives you more control over the mesh distribution e.g., decreasing con
allows more clustering. A typical value is 2/(npts — 1), but you are encouraged to experiment with
different values. Its value is not critical and the mesh should be qualitatively correct for all values
in the range given below.

[NP3660/8] d03pre.15

d03prc NAG C Library Manual

31:

32:

Suggested value: con = 2.0/(NPTS — 1).
Constraint: 0.1/(npts — 1) < con < 10.0/(npts — 1).

monitf — function, supplied by the user External Function

monitf must supply and evaluate a remesh monitor function to indicate the solution behaviour of
interest.

If you specify remesh = Nag_False, i.e., no remeshing, then monitf will not be called and the
dummy function dO3pel may be used for monitf. (dO3pel is included in the NAG C Library;
however, its name may be implementation-dependent: see the Users’ Note for your implementation
for details.)

Its specification is:

void monitf (double t, Integer npts, Integer npde, const double x[],
const double u[], double fmon[], Nag_Comm *comm)

1: t — double Input

On entry: the current value of the independent variable .
2: npts — Integer Input
On entry: the number of mesh points in the interval [a, b].

3: npde — Integer Input
On entry: the number of PDEs in the system.

4: x[npts| — const double Input
On entry: the current mesh. x[i — 1] contains the value of x;, for i = 1,2,..., npts.
5: u[npde x npts] — const double Input

On entry: u[npde X j + i] contains the value of U;(x,?) at x = x[j — 1] and time ¢, for
i=1,2,...,npde; j=1,2,... npts.

6: fmon[npts] — double Output
On exit: fmon(i — 1] must contain the value of the monitor function " (x) at mesh point
x=x[i —1].

7: comm — Nag Comm * Communication Structure

Pointer to structure of type Nag Comm; the following members are relevant to monitf.

user — double *
iuser — Integer *
p — Pointer

The type Pointer will be void *. Before calling

nag pde parab 1d keller ode remesh (d03prc) these pointers may be allocated
memory by the user and initialized with various quantities for use by monitf when
called from nag pde parab 1d keller ode remesh (d03prc).

rsave[lrsave] — double Communication Array
If ind = 0, rsave need not be set on entry.

If ind = 1, rsave must be unchanged from the previous call to the function because it contains
required information about the iteration.

d03pre.16 [NP3660/8]

d03 — Partial Differential Equations d03pre

33: Irsave — Integer Input

On entry: the dimension of the array rsave as declared in the function from which
nag pde parab_1d keller ode remesh (d03prc) is called. Its size depends on the type of matrix
algebra selected:

if laopt = Nag_LinAlgFull, Irsave > neqn X neqn + neqn + nwkres + lenode;
if laopt = Nag_LinAlgBand, Irsave > (3 x mlu + 1) x neqn + nwkres + lenode;
if laopt = Nag_LinAlgSparse, Irsave > 4 x neqn + 11 X neqn/2 + 1 + nwkres + lenode;

where

ml and mu are the lower and upper half bandwidths given by npde + nleft — 1, and
mu = 2 X npde — nleft — 1, for problems involving PDEs only, and
ml = mu = neqn — 1, for coupled PDE/ODE problems.

nwkres = npde x (3 x npde + 6 x nxi + npts + 15) + nxi + ncode + 7 x npts +

nxfix + 1, when ncode > 0 and nxi > 0, and

nwkres = npde x (3 x npde + npts + 21) + ncode + 7 x npts + nxfix + 2, when
ncode > 0 and nxi = 0, and

nwkres = npde x (3 x npde + npts + 21) + 7 x npts + nxfix + 3, when ncode = 0.

lenode = (6 + int(algopt[1])) x neqn + 50, when the BDF method is used, and
lenode = 9 x neqn + 50, when the Theta method is used.

Note: when using the sparse option, the value of Irsave may be too small when supplied to the
integrator. An estimate of the minimum size of Irsave is printed on the current error message unit if
itrace > 0 and the function returns with fail.code = NE_INT 2.

34: isave[lisave] — Integer Communication Array

If ind = 0, isave need not be set.

If ind = 1, isave must be unchanged from the previous call to the function because it contains
required information about the iteration. In particular the following components of the array isave
concern the efficiency of the integration:

isave[0]
Contains the number of steps taken in time.
isave[l]

Contains the number of residual evaluations of the resulting ODE system used. One such
evaluation involves evaluating the PDE functions at all the mesh points, as well as one
evaluation of the functions in the boundary conditions.

isave[2]

Contains the number of Jacobian evaluations performed by the time integrator.
isave[3]

Contains the order of the ODE method last used in the time integration.
isave[4]

Contains the number of Newton iterations performed by the time integrator. Each iteration
involves residual evaluation of the resulting ODE system followed by a back-substitution
using the LU decomposition of the Jacobian matrix.

The rest of the array is used as workspace.

[NP3660/8] d03pre.17

d03prc NAG C Library Manual

35: lisave — Integer Input

On entry: the dimension of the array isave as declared in the function from which
nag pde parab_1d keller ode remesh (d03prc) is called. Its size depends on the type of matrix
algebra selected:

if laopt = Nag_LinAlgFull, lisave > 25 + nxfix;
if laopt = Nag_LinAlgBand, lisave > neqn + 25 + nxfix;
if laopt = Nag_LinAlgSparse, lisave > 25 x neqn + 25 + nxfix.

Note: when using the sparse option, the value of lisave may be too small when supplied to the
integrator. An estimate of the minimum size of lisave is printed if itrace > 0 and the function returns
with fail.code = NE_INT 2.
36: itask — Integer Input

On entry: the task to be performed by the ODE integrator.
itask = 1

Normal computation of output values u at ¢ = tout (by overshooting and interpolating).
itask = 2

Take one step in the time direction and return.
itask =3

Stop at first internal integration point at or beyond ¢ = tout.
itask = 4

Normal computation of output values u at ¢ = tout but without overshooting ¢ = ¢, where
tuie 18 described under the argument algopt.

itask = 5

Take one step in the time direction and return, without passing ¢, where 7 is described
under the argument algopt.

Constraint: 1 < itask < 5.

37: itrace — Integer Input

On entry: the level of trace information required from nag pde parab 1d keller ode remesh
(d03prc) and the underlying ODE solver as follows:

itrace < —1

No output is generated.
itrace =0

Only warning messages from the PDE solver are printed .
itrace = 1

Output from the underlying ODE solver is printed . This output contains details of Jacobian
entries, the nonlinear iteration and the time integration during the computation of the ODE
system.

itrace =2

Output from the underlying ODE solver is similar to that produced when itrace = 1, except
that the advisory messages are given in greater detail.

itrace > 3

The output from the underlying ODE solver is similar to that produced when itrace = 2,
except that the advisory messages are given in greater detail.

d03pre.18 [NP3660/8]

d03 — Partial Differential Equations d03prc

38:

39:

40:

41:

42:

6

outfile — const char * Input
On entry: the name of a file to which diagnostic output will be directed. If outfile is NULL the
diagnostic output will be directed to standard output.
ind — Integer * Input/Output
On entry: must be set to 0 or 1.
ind =0

Starts or restarts the integration in time.
ind =1

Continues the integration after an earlier exit from the function. In this case, only the
arguments tout and fail and the remeshing arguments nrmesh, dxmesh, trmesh, xratio and
con may be reset between calls to nag pde parab _1d keller ode remesh (d03prc).

Constraint: 0 <ind < 1.

On exit: ind = 1.
comm — Nag Comm * Communication Structure

The NAG communication argument (see Section 2.2.1.1 of the Essential Introduction).

saved — Nag D03 Save * Communication Structure
Note: saved is a NAG defined type (see Section 2.2.1.1 of the Essential Introduction).

saved must remain unchanged following a previous call to a d03 function and prior to any
subsequent call to a d03 function.

fail — NagError * Input/Output
The NAG error argument (see Section 2.6 of the Essential Introduction).

Error Indicators and Warnings

NE_ACC_IN_DOUBT

Integration completed, but small changes in atol or rtol are unlikely to result in a changed solution.

NE_BAD_PARAM

On entry, argument (value) had an illegal value.

NE_FAILED_DERIV

In setting up the ODE system an internal auxiliary was unable to initialize the derivative. This
could be due to your setting ires = 3 in pdedef or bndary.

NE_FAILED START

atol and rtol were too small to start integration.

NE_FAILED_STEP

Error during Jacobian formulation for ODE system. Increase itrace for further details.

Repeated errors in an attempted step of underlying ODE solver. Integration was successful as far as
ts: ts = (value).

Underlying ODE solver cannot make further progress from the point ts with the supplied values of
atol and rtol. ts = (value).

[NP3660/8] d03pre.19

d03prc NAG C Library Manual

NE_INCOMPAT PARAM
On entry, con < 0.1/(npts — 1): con = (value), npts = (value).
On entry, con > 10.0/(npts — 1): con = (value), npts = (value).
On entry, the point xfix[i —1] does not coincide with any x[j—1]: i= (value),
xfix[i — 1] = (value).

NE_INT
On entry, ind is not equal to 0 or 1: ind = (value).
On entry, ipminf is not equal to 0, 1, or 2: ipminf = (value).
ires set to an invalid value in call to pdedef, bndary, or odedef.
On entry, itask is not equal to 1, 2, 3, 4 or 5: itask = (value).
On entry, itol is not equal to 1, 2, 3, or 4: itol = (value).

On entry, ncode = (value).
Constraint: ncode > 0.

On entry, nleft = (value).
Constraint: nleft > 0.

On entry, npde = (value).
Constraint: npde > 1.

On entry, npts = (value).
Constraint: npts > 3.

On entry, nxfix = (value).
Constraint: nxfix > 0.

On entry, nxi = (value).
Constraint: nxi > 0.
NE_INT 2
On entry, corresponding elements atol[i — 1] and rtolj — 1] are both zero. i = (value), j = (value).
On entry, lisave is too small: lisave = (value). Minimum possible dimension: (value).
On entry, Irsave is too small: Irsave = (value). Minimum possible dimension: (value).
On entry, nleft > npde: nleft = (value), npde = (value).
On entry, nxfix > npts — 2: nxfix = (value), npts = (value).

When using the sparse option lisave or Irsave is too small: lisave = (value), Irsave = (value).

NE_INT 4

On entry, neqn is not equal to npde x npts + ncode: neqn = (value), npde = (value),
npts = (value), ncode = (value).

NE_INTERNAL_ERROR

Serious error in internal call to an auxiliary. Increase itrace for further details.

NE_ITER_FAIL

In solving ODE system, the maximum number of steps algopt[14] has been exceeded.
algopt[14] = (value).

NE_NOT_CLOSE_FILE

Cannot close file (value).

d03pre.20 [NP3660/8]

d03 — Partial Differential Equations d03pre

NE_NOT_STRICTLY_INCREASING

On entry, mesh points x appear to be badly ordered: i = (value), x[i — 1] = {value), j = (value),
x[j — 1] = (value).

On entry, xfix[i] < xfix[i — 1]: i = (value), xfix[i] = (value), xfix[i — 1] = (value).

On entry, xi[i] < xi[i — 1]: i = (value), xili] = (value), xi[i — 1] = (value).

NE_NOT_WRITE_FILE

Cannot open file (value) for writing.

NE_REAL

On entry, dxmesh = (value).
Constraint: dxmesh > 0.0.

On entry, xratio = (value).
Constraint: xratio > 1.0.

NE_REAL 2

On entry, at least one point in xi lies outside [x[0],x[npts — 1]]: x[0] = (value),
x[npts — 1] = (value).

On entry, tout — ts is too small: tout = (value), ts = (value).

On entry, tout < ts: tout = (value), ts = (value).

NE_REAL_ARRAY

On entry, atol[i — 1] < 0.0: i = (value), atol[i — 1] = (value).

On entry, rtol[i — 1] < 0.0: i = (value), rtol[i — 1] = (value).
NE_REMESH_CHANGED

remesh has been changed between calls to nag pde parab 1d fd ode remesh (d03ppc).

NE_SING_JAC
Singular Jacobian of ODE system. Check problem formulation.

NE_USER_STOP

In evaluating residual of ODE system, ires =2 has been set in pdedef, bndary, or odedef.
Integration is successful as far as ts: ts = (value).

NE_ZERO_WTS

Zero error weights encountered during time integration.

7 Accuracy

nag pde parab_1d keller ode remesh (dO3prc) controls the accuracy of the integration in the time
direction but not the accuracy of the approximation in space. The spatial accuracy depends on both the
number of mesh points and on their distribution in space. In the time integration only the local error over
a single step is controlled and so the accuracy over a number of steps cannot be guaranteed. You should
therefore test the effect of varying the accuracy arguments, atol and rtol.

8 Further Comments

The Keller box scheme can be used to solve higher-order problems which have been reduced to first-order
by the introduction of new variables (see the example in Section 9). In general, a second-order problem
can be solved with slightly greater accuracy using the Keller box scheme instead of a finite-difference

[NP3660/8] d03pre.21

d03pre NAG C Library Manual

scheme (nag_pde parab _1d fd ode remesh (d03ppc) for example), but at the expense of increased CPU
time due to the larger number of function evaluations required.

It should be noted that the Keller box scheme, in common with other central-difference schemes, may be
unsuitable for some hyperbolic first-order problems such as the apparently simple linear advection equation
U,+ aU, = 0, where a is a constant, resulting in spurious oscillations due to the lack of dissipation. This
type of problem requires a discretization scheme with upwind weighting
(nag_pde parab 1d cd ode remesh (d03psc) for example), or the addition of a second-order artificial
dissipation term.

The time taken depends on the complexity of the system, the accuracy requested, and the frequency of the
mesh updates. For a given system with fixed accuracy and mesh-update frequency it is approximately
proportional to neqn.

9 Example

This example is the first-order system
ou, oU, 09U,
+ +

= 0,
ot Ox Ox
ou, 0U, 0U,
4 = 0,
a " ox T or
for x € [0,1] and z > 0.
The initial conditions are
Ul (x’ 0) = exa
Us(x,0) = x*+sin(2m?),
and the Dirichlet boundary conditions for U; at x =0 and U, at x = 1 are given by the exact solution:
Uixf) = et e+ %{sin (27r(x - 3:)2) ~sin (27r(x + t)2> } + 27 — 2xt,
Uy(x,t) = &' =™+ %{sin<27r(x - 3[)2) + sin<27r(x + t)2>} + X% 4 565 — 2xt.

9.1 Program Text
/* nag_pde_parab_1d_keller_ode_remesh (dO3prc) Example Program.

* Copyright 2001 Numerical Algorithms Group.

* Mark 7, 2001.
*/

#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd03.h>
#include <nagx0l.h>
static void pdedef (Integer, double, double, const double[], const doublel],
const double[], Integer, const doublel[],
const double[], double[], Integer *, Nag_Comm *);
static void bndary(Integer, double, Integer, Integer, const doublel[],
const double[], Integer, const doublel],
const double[], double[], Integer #*, Nag_Comm *);
static void uvinit(Integer, Integer, Integer, const doublel],
const double[], double[], Integer, doublel],
Nag_Comm *) ;
static void monitf (double, Integer, Integer, const doublel],
const double[], doublel[], Nag_Comm *);
static void exact(double, Integer, Integer, double *, double *);

#define UE(I,J) uelnpde*((J)-1)+(I)-1]
#define U(I,J) ulnpde*((J)-1)+(I)-1]

d03pre.22 [NP3660/8]

d03 — Partial Differential Equations d03prc
#define UOUT(I,J,K) uout[npdex (intpts*((K)-1)+(J)-1)+(I)-11]

int main(void)
{
const Integer npde=2, npts=61, ncode=0, nxi=0, nxfix=0, nleft=1,
itype=1, intpts=5, negn=npde*npts+ncode, lisave=25+nxfix,
nwkres=npde* (npts+3*npde+21)+7*npts+nxfix+3, lenode=11*negn+50,
lrsave=neqgn#*neqgn+negn+nwkres+lenode;
double con, dxmesh, tout, trmesh, ts, xratio;
Integer exit_status, i, ind, ipminf, it, itask, itol, itrace, nrmesh;
Nag_Boolean remesh, theta;
double *algopt=0, *atol=0, *rsave=0, *rtol=0, #*u=0, #*ue=0,
*uout=0, *x=0, *xfix=0, #*xi=0, *xout=0;
Integer xisave=0;
NagError fail;
Nag_Comm comm;
Nag_DO03_Save saved;

/* Allocate memory */

if (!(algopt = NAG_ALLOC(30, double)) ||
! (atol = NAG_ALLOC(1, double)) ||
! (rsave = NAG_ALLOC(lrsave, double)) ||
I (rtol = NAG_ALLOC(1, double)) ||
! (u = NAG_ALLOC (npde*npts, double)) ||
! (ue = NAG_ALLOC (npde#*npts, double)) ||
! (uout = NAG_ALLOC (npde*intpts*itype, double)) ||
I (x = NAG_ALLOC(npts, double)) ||
! (xfix = NAG_ALLOC(1l, double)) ||
| (xi = NAG_ALLOC(1, double)) ||
! (xout = NAG_ALLOC (intpts, double)) ||
! (isave = NAG_ALLOC(lisave, Integer)))
{
Vprintf ("Allocation failure\n");
exit_status = 1;
goto END;
}

INIT_FAIL(fail);
exit_status = 0;

Vprintf ("nag_pde_parab_1d_keller_ode_remesh (dO3prc) Example Program"
" Results\n\n");

itrace = 0;

itol = 1;

atol[0] = 5.0e-5;
rtol[0] = atol[O0];

Vprintf (" Accuracy requirement =%10.3e", atol[0]);
Vprintf (" Number of points = %31d\n\n", npts);

/* Set remesh parameters */

remesh = Nag_TRUE;

nrmesh = 3;

dxmesh = 0.0;

trmesh = 0.0;

con = 5.0/(npts-1.0);

xratio = 1.2;

ipminf = 0O;

Vprintf (" Remeshing every %31d time steps\n\n", nrmesh);

/* Initialise mesh =*/

for (i = 0; i < npts; ++i) x[i] = i/(npts-1.0);
xout [0] 0.0;

xout[1l] = 0.25;

xout[2] = 0.5;

xout[3] = 0.75;

[NP3660/8] d03pre.23

d03pre NAG C Library Manual

xout[4] = 1.0;
Vprintf (" x ")

for (i = 0; i < intpts; ++1)
{
Vprintf ("%10.4£f", xoutl[i]);
Vprintf ((i+1)%5 == 0 || 1 == 4 2"\n":" ");
}
Vprintf ("\n\n") ;

x1[0]
ind =
itask

ol

/* Set theta to TRUE if the Theta integrator is required =*/

theta = Nag_FALSE;
for (i = 0; i < 30; ++1i) algoptl[i]l = 0.0;
if (theta)
{
algopt([0]
algopt([5]
algoptl[6] =

[eNoNe]

~e ~e

Il
P NN

}

/* Loop over output value of t */

ts = 0.0;
tout = 0.0;

for (it = 0; it < 5; ++it)

{
tout = 0.05%(it+1);

/* nag_pde_parab_1d_keller_ode_remesh (d03prc).
* General system of first-order PDEs, coupled DAEs, method
* of lines, Keller box discretisation, remeshing, one space
* variable
*/
nag_pde_parab_1d_keller_ode_remesh(npde, &ts, tout, pdedef, bndary,
uvinit, u, npts, x, nleft, ncode,
dO03pek, nxi, xi, neqgn, rtol, atol,
itol, Nag_TwoNorm, Nag_LinAlgFull,
algopt, remesh, nxfix, xfix, nrmesh,
dxmesh, trmesh, ipminf, xratio, con,
monitf, rsave, lrsave, isave, lisave,
itask, itrace, 0O, &ind, &comm, &saved,
&fail);

if (fail.code != NE_NOERROR)

{
Vprintf ("Error from nag_pde_parab_1ld_keller_ode_remesh"

" (d03prc) .\n%s\n", fail.message);
exit_status = 1;
goto END;
¥

/* Interpolate at output points x/

/* nag_pde_interp_1d_fd (dO03pzc).
*# PDEs, spatial interpolation with nag pde_parab_1d_fd
* (dO03pcc), nag_pde_parab_1d_keller (dO3pec),
* nag_pde_parab_1d_cd (d03pfc), nag_pde_parab_1d_fd_ode
* (d03phc), nag_pde_parab_1d_keller_ode (d03pkc),
* nag_pde_parab_1d_cd_ode (d03plc),
* nag_pde_parab_1d_fd_ode_remesh (dO03ppc),
* nag_pde_parab_1d_keller_ode_remesh (d0O3prc) or
* nag_pde_parab_1d_cd_ode_remesh (d03psc)
*
/
nag_pde_interp_1d_fd(npde, 0, u, npts, x, xout, intpts, itype, uout,
&fail);

d03pre.24 [NP3660/8]

d03 — Partial Differential Equations

if (fail.code != NE_NOERROR)

{
Vprintf ("Error from nag_pde_interp_1d_fd (d03pzc) .\n%s\n",
fail.message);
exit_status = 1;
goto END;
}

/* Check against exact solution =*/
exact(ts, npde, intpts, xout, ue);

Vprintf (" t = %6.3f\n", ts);
Vprintf (" Approx ul");

for (i = 1; i <= intpts; ++i)
{
Vprintf ("$10.4f", UOUT(1,1i,1));
Vprintf (i%5 == 0 || i == 5 2"\n":"");
}

Vprintf (" Exact ul");

for (i = 1; i <= 5; ++1i)
{
Vprintf ("%10.4f", UE(1,1));
Vprintf (i%5 == [|] 1 == 5 2"\n":"");
¥

Vprintf (" Approx u2");
for (i = 1; i <= 5; ++1)
{
Vprintf ("$10.4f", UOUT(2,i,1));
Vprintf (i%5 == [| 1 ==5 2"\n":"");
¥
Vprintf (" Exact u2");

for (i = 1; 1 <= 5; ++1)

{
Vprintf ("$10.4f", UE(2,1));
Vprintf (i%5 == 0 || 1i == 5 ?2"\n":"");
¥
Vprintf ("\n")
}

Vprintf (" Number of integration steps in time = %61d\n", isave[0]);
Vprintf (" Number of function evaluations = %61d\n", isavel[ll]);
Vprintf (" Number of Jacobian evaluations =%6ld\n", isavel[2]);
Vprintf (" Number of iterations = %6ld\n\n", isavel[4]);
END:

if (algopt) NAG_FREE (algopt);

if (atol) NAG_FREE (atol);

if (rsave) NAG_FREE(rsave) ;

if (rtol) NAG_FREE(rtol);

if (u) NAG_FREE (u);

if (ue) NAG_FREE (ue);

if (uout) NAG_FREE (uout) ;

if (x) NAG_FREE (x);

if (Xle) NAG_FREE (xfix) ;

if (xi) NAG_FREE (x1i);

if (xout) NAG_FREE (xout) ;

if (isave) NAG_FREE (isave) ;

return exit_status;

}

static void uvinit(Integer npde, Integer npts, Integer nxi, const double

[NP3660/8]

d03prec

x[1,

d03prec.25

d03pre NAG C Library Manual

const double xi[], double ul[l], Integer ncode,
double v[], Nag_Comm *comm)

{
Integer 1ij;
for (i = 1; i <= npts; ++1i)
{
U(l, i) = exp(x[i-1]);
U(2, i) = x[i-1]1*x[i-1] + sin(2.0%*nag_pi*(x[i-1]1*x[i-11));
}
return;
3

static void pdedef (Integer npde, double t, double x, const double ull,
const double udot[], const double ux[],
Integer ncode, const double vI[],
const double vdot[], double res[], Integer *ires,
Nag_Comm *comm)

{
if (*ires == -1)
{
res[0] = udot[0];
res[1l] = udot[1l];
} else {
res[0] = udot[0] + ux[0] + ux[1];
res[1l] = udot[1l] + 4.0%ux[0] + ux[1l];
}
return;
}

static void bndary(Integer npde, double t, Integer ibnd, Integer nobc,
const double ul[], const double udotl[],
Integer ncode, const double vI[],
const double vdot[], double res[], Integer x*ires,
Nag_Comm *comm)

{
double pp;
pp = 2.0*nag_pi;
if (ibnd == 0)
{
if (*ires == -1)
{
res[0] = 0.0;
} else {
res[0] = u[0] - 0.5%(exp(t) + exp(-3.0%t))
-0.25*(sin(9.0*pp*t*t) — sin(pp*t*t)) - 2.0*t*t;
}
} else {
if (*ires == -1) {
res[0] = 0.0;
} else {
res[0] = ull] - (exp(1l.0-3.0*t) - exp(t + 1.0)
+ 0.5%(sin(pp*(1.0-3.0*t)*(1.0-3.0%t))
+ sin(pp*(t+1.0)*(t+1.0)))
+ 1.0 + 5.0%t*t - 2.0%t);
3
}
return;
}

static void monitf (double t, Integer npts, Integer npde, const double x[],
const double u[], double fmon[], Nag_Comm *comm)

{
double d2x1, d2x2, hl, h2, h3;

Integer 1ij;

for (i = 2; i <= npts-1; ++1i)

{
hl = x[1 - 1] - x[1 - 2];
h2 = x[i] - x[1 - 1];
h3 = 0.5%x(x[1] - x[1i - 2]);

d03pre.26 [NP3660/8]

d03 — Partial Differential Equations

}

/* Second derivatives */

d2xl = fabs(((U(1,i+1)-U(1,i))/h2-(U(1,1)-U(1,i-1))/hl1l)/h3);
d2x2 = fabs(((U(2,i+1)-U0(2,1i))/h2-(U(2,1)-U(2,1i-1))/hl)/h3);
fmon[i-1] = d2x1; if (d2x2 > d2x1l) fmon[i-1] = d2x2;
}
fmon[0] = fmon[1l];
fmon[npts-1] = fmon[npts-2];

return;

static void exact(double t, Integer npde, Integer npts, double =*x,

{

}

double *u)
/* Exact solution (for comparison purposes) =*/

double pp;
Integer 1i;

pp = 2.0*nag_pi;
for (i = 1; i <= npts; ++1i)
{
U(1, i) = 0.5*(exp(x[i-1]1+t) + exp(x[i-1]1-3.0%*t))
+ 0.25*(sin(pp*(x[1-1]1-3.0*t)*(x[1-1]-3.0%*t))
- sin(pp*(x[i-1]1+t)*(x[i-1]1+t)))
+ 2.0%t*t - 2.0*x[1-1]*t;

U(2, 1) = exp(x[i-1]1-3.0%t) - exp(x[i-1]+t) +
0.5* (sin(pp* ((x[1i-1]1-3.0%t)*(x[1i-1]-3.0%t)))
+ sin(pp*((x[i-1]+t)*(x[i-11+t))))
+ x[1i-11*x[i-1] + 5.0*t*xt - 2.0*x[1i-1]%*t;
¥

return;

9.2 Program Data

None.

9.3 Program Results

nag_pde_parab_1d_keller_ode_remesh (d03prc) Example Program Results

Accuracy requirement = 5.000e-05 Number of points = 61

Remeshing every 3 time steps

X 0.0000 0.2500 0.5000 0.7500 1.0000
t = 0.050

Approx ul 0.9923 1.0894 1.4686 2.3388 2.1071
Exact ul 0.9923 1.0893 1.4686 2.3391 2.1073
Approx u2 -0.0997 0.1057 0.7180 0.0967 0.2021
Exact u2 -0.0998 0.1046 0.7193 0.0966 0.2022
t = 0.100

Approx ul 1.0613 0.9856 1.3120 2.3084 2.1039
Exact ul 1.0613 0.9851 1.3113 2.3092 2.1025
Approx u2 -0.0150 -0.0481 0.1075 -0.3240 0.3753
Exact u2 -0.0150 -0.0495 0.1089 -0.3235 0.3753
t = 0.150

Approx ul 1.1485 0.9763 1.2658 2.0906 2.2027
Exact wul 1.1485 0.9764 1.2654 2.0911 2.2027
Approx u2 0.1370 -0.0250 -0.4107 -0.8577 0.3096
Exact u2 0.1366 -0.0266 -0.4100 -0.8567 0.3096
t = 0.200

Approx ul 1.0956 1.0529 1.3407 1.8322 2.2035

[NP3660/8]

d03prec

d03prec.27

d03pre

Exact ul
Approx u2
Exact u2

t = 0.250
Approx ul
Exact ul
Approx u2
Exact u2

Number of
Number of
Number of
Number of

1.0956 1.0515 1.3393
0.0381 0.1282 -0.7979
0.0370 0.1247 -0.7961
0.8119 1.1288 1.5163
0.8119 1.1276 1.5142
-0.4968 0.2123 -1.0259
-0.4992 0.2078 -1.0257

integration steps in time =

function evaluations = 2579
Jacobian evaluations = 20
iterations = 126

-1

-1

50

.8327
-1.
.1784

1776

.6076
.6091
-1.
.2183

2149

-1

.2050
-0.
-0.

4221
4221

.2027

2.
-1.
.3938

2035
3938

NAG C Library Manual

d03prec.28 (last)

[NP3660/8]

	d03prc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	npde
	ts
	tout
	pdedef
	npde
	t
	x
	u
	udot
	ux
	ncode
	v
	vdot
	res
	ires
	comm
	user
	iuser
	p

	bndary
	npde
	t
	ibnd
	nobc
	u
	udot
	ncode
	v
	vdot
	res
	ires
	comm
	user
	iuser
	p

	uvinit
	npde
	npts
	nxi
	x
	xi
	u
	ncode
	v
	comm
	user
	iuser
	p

	u
	npts
	x
	nleft
	ncode
	odedef
	npde
	t
	ncode
	v
	vdot
	nxi
	xi
	ucp
	ucpx
	ucpt
	f
	ires
	comm
	user
	iuser
	p

	nxi
	xi
	neqn
	rtol
	atol
	itol
	norm
	laopt
	algopt
	remesh
	nxfix
	xfix
	nrmesh
	dxmesh
	trmesh
	ipminf
	xratio
	con
	monitf
	t
	npts
	npde
	x
	u
	fmon
	comm
	user
	iuser
	p

	rsave
	lrsave
	isave
	lisave
	itask
	itrace
	outfile
	ind
	comm
	saved
	fail

	6 Error Indicators and Warnings
	NE_ACC_IN_DOUBT
	NE_BAD_PARAM
	NE_FAILED_DERIV
	NE_FAILED_START
	NE_FAILED_STEP
	NE_INCOMPAT_PARAM
	NE_INT
	NE_INT_2
	NE_INT_4
	NE_INTERNAL_ERROR
	NE_ITER_FAIL
	NE_NOT_CLOSE_FILE
	NE_NOT_STRICTLY_INCREASING
	NE_NOT_WRITE_FILE
	NE_REAL
	NE_REAL_2
	NE_REAL_ARRAY
	NE_REMESH_CHANGED
	NE_SING_JAC
	NE_USER_STOP
	NE_ZERO_WTS

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

